In this case study, we will be looking at a test and measurement system that is used to develop statistics on a system that interfaces with multiple ports of up to 100G Ethernet. The key challenge is to develop an FPGA-based card which can analyze and capture Ethernet data for line speeds (10G\40G\100G).
The Ethernet data shall be monitored based on filtering criteria. The filtering can be based on any number of criteria such as VLAN, IP, Port number, etc., or using a combination of any of these. Once the filtering criteria is matched, the system will then analyze the traffic and take the required data analytics.
The required throughput data dedicated a capture of up to 576 bits per packet and a read of up to 576 bits per frame. This requirement is per GCI Port of the Bandwidth Engine or the equivalent of 176Gb per port on the BE3 device, (352 Gb per BE3 device).
The BE3 device offers the ability to support counter adjustments when utilizing the on chip ALU function. In this case, the device is used to store the counter data that is adjusted by the host.
MOSYS SOLUTION:
Because of the amount of logic needed to perform the other packet manipulation functions and because of the number of high speed SerDes needed for Ethernet and memory interfaces, the desired FPGA is an UltraScale+ or Stratix 10 class device.
This proposed solution allows the customer to successfully build a subsystem card that achieves the desired bandwidth to support multiple 100Gb interfaces and utilizes a significantly lower number of FPGA I/O resources and LUTs to build the required memory controller.
The Block Diagram in the figure above shows how the two 100G Ethernet ports are linked through the FPGAs to the two ports of the MoSys Bandwidth Engine. The Dual-Ported capability of the Bandwidth Engine 3 was also helpful in requiring only one device to handle multiple ports.
Requirement
Approach / Comment
1
An FPGA which has the bandwidth to support multiple Ethernet data for line speeds (10G\40G\100G)
Intel® Stratix 10® & Xilinx® UltraScale™ + families have the appropriate amount of logic and high speed SerDes lanes
2
Must maintain line speed
Use one GCI Port per 100G Ethernet port to support up to 176 Gb of data
3
Interfaces with the high-speed Transceivers on Stratix 10 and UltraScale + class FPGAs
The BE3 device is CEI compliant up to 25Gbps (NRZ)
4
Provide independent memory access from two sources
The BE3 device is capable of supporting access to the memory array from two independent hosts (even if running at different SerDes Rates)
KEY POINTS SUMMARY:
Largest single chip high speed SRAM device on the market (1.1Gb)
tRC = 3.2ns
Interfaces to the Host using CEO compliant SerDes
Uses only 64 pins
Can be accessed from two separate Hosts (Dual Ported)
Low latency SerDes protocol allows for SRAM equivalent performance interface
Proven to work with Intel Stratix 10 and Xilinx UltraScale+ class devices
Less than 50K LUTs to implement the memory controller and GCI serial protocol logic
Upgrade path for even higher performance: MoSys offers its Programmable HyperSpeed Engine (PHE) device in the same package as the BE3. The PHE has 32 embedded 8 way threaded 1.5Ghz core clock RISC engines to enable algorithm acceleration and 2x higher transaction rate for future proofing the design
The PHE features four levels of memory, 32 Risc core processors to perform user-programmed In-Memory Functions (IMFs), along with all of the fixed BURST and RMW functions included in the BE3 products. We combine this with our high-speed serial protocol I/O interface to enable your applications to achieve hyperspeed performance.
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.