
 

 

 

 

 

 

 

 

 

            

Quazar Serial Accelerator Devices 
This product brief presents a comprehensive 
overview of the integration and 
implementation of the MoSys family of 
Quazar accelerator engines and shows how 
applications can be accelerated by utilization 
of the readily available MoSys IP. 
 
The MoSys RTL controller operates similar 
to a QDR type memory. 
 

Key Features / Product Options 
 
• Highlight simple user RTL interface that 

controls the serial memory interface, 
requiring no user RTL design effort  

• Interfaces between Memory Controller and 
User Application 

• Read and Write controls 

• Interface Signals 

• Memory Controller selected by user to 
operate memory in DEEP Mode (4 SRAMS) 
or WIDE Mode (8 SRAMS) 

 
 

 
 

 

Overview 
 

The MoSys memory controllers are 
designed to simplify the integration of the 
accelerator engines into a design.  
 
• The controllers are built with all the high-

speed SerDes control and implementation of 
the GCI protocol essentially “hidden away” 
from your design effort.  

 
• MoSys controllers which have been deployed 

in the field since 2004 have been proven to 
be robust and reliable.  

 

• The interface which is presented to the user 
application interface is a straightforward 
Address, Data, Command bus structures 
compatible with and easily adapted to an AXI 
interface.  

 

• Multiple versions are available to support 
different access patterns and for different 
hosts (Xilinx, Intel, ASIC etc.)  

 
This write-up has been presented to allow a 
user to realize that integration and 
implementation of the MoSys Quazar family 
of accelerator engines is not a long process 
and can be accelerated by utilization of the 
readily available MoSys IP. 
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Introduction 
 

The MoSys Quazar memory controllers are 
designed and offered with a few variations of 
memory access patterns. The most common 
access patterns are: 

 

• Balanced Read/Write (similar to QDR 
SRAM) 

• Native (higher read access than write – for 
table access applications) 

• This is two separate controllers) 

 

The RTL that is supplied by MoSys provides an 
interface between the User Application Logic 
and the MoSys Quazar Accelerator Engine 
device (MSQ220 = QPR4 or MSQ230 = 
QPR8). The Memory Controller also 
implements all the required signaling and 
handshaking defined in the GCI Interface 
protocol, Framer logic. 

 

The signals interface at the User Application 
provides Quad Partition Rate (QPR) devices 
with a simple SRAM memory read/write 
operation. This simple interface shields the 
users from designing scheduling logic for QPR 
memory partitions wheel. 
 

 
 
 

 

 

 

The goal of each of the Memory Controller designs 
is to balance the bandwidth between the User 
Application Interface and the QPR Interface. For 
many applications there will be four read/write 
interfaces from the User Application running at the 
host core clock frequency. This is to balance the 
bandwidth of the application logic (assumed to be 
running at FPGA speeds vs. the GCI I/O and core 
frequency of the MoSys accelerator engines)        

 

In many of the FPGA applications that has been 
between 250MHz and 390MHz clock rate. Each 
interface can accommodate one memory read and 
one memory write on each clock cycle. These 
result in memory accesses per interface that can 
saturate the access bus to the memory. 

 

This allows the total bandwidth at the User 
Application interfaces to be up to 2.5 billion 
memory accesses per second when using an 
MSQ220 device and 5 billion memory operations 
when using an MSQ230 device. (This bandwidth 
matches the total I/O bandwidth on a QPR device 
when using all 16 lanes at maximum allowable 
SerDes rate of the Accelerator engine device) per 
lane. The following picture illustrates the above 
memory bandwidth discussion. 
 

 
2.5 Billion Accesses for 2 - GCI interfaces 

 

 

 
 
 

 
 

 

 

 

Figure 2: Memory Controller Interface 
Figure 1: Memory Bandwidth between Memory 

Controller and Bandwidth Engine. 

 

 



 
 
 
 
 
 
 
Memory Operating Modes 
 
Each QPR memory has two ports and the memory can operate in two modes. 
 

• Deep Mode 
o 4 independent SRAMs  
o SRAMs capacity is the device total capacity divided by 4. 
o MSQ220 (QPR4) has 4 memories of 2M x 72b 
o MSQ230 (QPR8) has 4 memories of 4M x 72b 

• Wide Mode 
o 8 independent SRAMS 
o SRAMs capacity is the device total capacity divided by 8 
o MSQ220 (QPR4) has 8 memories of 1M x 72b 
o MSQ230 (QPR8) has 8 memories of 2M x 72b 

 
The following description of the RTL controller described the User RTL interface to one  
SRAM. This interface is duplicated for each SRAM on the device. 
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Diagram shows the Memory DEEP Mode and 
WIDE Mode for QPR4 and QPR9 

   MSQ220 (QPR4)        576Mb Memory   
Deep 4 Partition RTL Memory Controller 
      Each Partition is 2M x 72b 
   Independent Random-Access 

   MSQ230 (QPR8)        1Gb  Memory   
Deep 4 Partition RTL Memory Controller 
      Each Partition is 4M x 72b 
   Independent Random-Access 

   MSQ220 (QPR4)        576Mb Memory   
Wide 8 Partition RTL Memory Controller 
      Each Partition is 1M x 72b 
   Independent Random-Access 

   MSQ230 (QPR8)        1Gb  Memory    
Wide 8 Partition RTL Memory Controller 
      Each Partition is 2M x 72b 
   Independent Random-Access 



 
 
 

Balanced Read/Write, Native 
 

Interfaces between Memory Controller and User 
Application 

This section describes the interface signals and the interface protocols between the Memory Controller 
and the User Application. 

Interface Signals 

The interface between Memory Controller and User Application consists of four sets of similar 
interface signals. However, just one of the interfaces will be described to avoid redundancy. All signals 
will be appended by the string “_pi” at the end of their names where i can be 0, 1, 2, or 3 depending on 
the interface set. 

 

The following table describes all the signals in one of the interface signals set between the User 
Application and the Memory Controller. There are up to four of these interface signals sets in an 
implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal Name Width Dir Description 

Read Interface 

rd_pi 1 In Assertion of this signal to indicate that this is a read transaction. 

rd_addr_pi 32 In Read address of the memory for this transaction. For burst transaction, this 

is the first address of the burst memory block. Please refer to the Address 

section of this specification to see the detail of this address field. 

rd_data_pi 72 Out Returned data from BE1 memory. This data is qualified by the “rd_datav_pi” 

signal. 

rd_wait_rq_pi 1 Out The Memory controller asserts “rd_wait_rq_pi” to indicate that it cannot 

accept the current read request. The User Application should hold all the 

request signals (rd_pi, rd_addr_pi …) until the de-assertion of this signal. 

rd_datav_pi 1 Out The Memory Controller asserts this signal to indicate the current data in the 

“rd_data_pi” bus is valid. 

rd_burstcount_pi 5 In These signals show the number of 72-bits words in this read burst 

transaction. 

rd_burst_pi 1 In Assertion of this signal to indicate this transaction is the read burst 

transaction. 

rd_flush_pi 1 In Assertion of this signal will flush all the pending read transactions and their 

associated read data. The flush action is effective for the next cycle after the 

assertion of “flush” signal. It is the responsibility of the User Application to 

ignore or to accept the valid “rd_data_pi” in the current cycle. 

Write Interface    

wr_pi 1 In Assertion of this signal to indicate that this is a write transaction. 

wr_addr_pi 32 In Write address of the memory for this transaction. For burst transaction, this 

is the first address of the burst memory block. Please refer to the Address 

section of this specification to see the detail of this address field. 

wr_data_pi 72 In Write data from the User Application logic. 

wr_wait_rq_pi 1 Out The Memory controller asserts “wr_wait_rq_pi” to indicate that it cannot 

accept the current write request. The User Application should hold all the 

request signals (wr_pi, wr_addr_pi …) until the de-assertion of this signal. 

wr_burstcount_pi 5 In These signals show the number of 72-bits words in this write burst 

transaction. 

wr_burst_pi 1 In Assertion of this signal to indicate this transaction is the write burst 

transaction 

    

    

 



 

Interface Protocol 

This section illustrates the interface protocols between the User Application and the Memory 
Controller. 

Single Read/Write transactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above picture illustrates the read transaction followed by a write transaction. A read 
transaction is initiated by the user application on the assertion of the “rd_pi” signal, and the read 
address “rd_addr_pi”. The Memory Controller returns the “rd_data_pi” along with the “rd_datav_pi” 
signal to indicate the read data is valid in that cycle. 

The write cycle is initiated by the user application on the assertion of the “wr_pi” signal, the write 
address “wr_addr_pi”, and the “wr_data_pi”. 

 

Single Read/Write Transaction with Wait cycles 
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Figure 3: Single Read/Write Transaction 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above picture illustrates the read transaction followed by the write transaction with wait request 
from the Memory Controller to stall the User Application. 

 

The read transaction is initiated by the assertion of signal “rd_pi” along with the read address 
“rd_addr_pi”. The Memory Controller asserts the “rd_wait_rq_pi” signal in the same cycle to request 
the User Application to hold the “rd_addr_pi” bus and the “rd_pi” signal until the de-assertion of 
“rd_wait_rq_pi”. This is the mechanism for the Memory Controller to asserts back-pressure the User 
Application logic in the case its FIFOs are full. As in the non-stalled case, the Memory Controller 
returns the “rd_data_pi” along with the “rd_datav_pi” signal to indicate the validity of the data in that 
cycle. 

The write transaction is initiated by the assertion of signal “wr_pi” along with the write address 
“wr_addr_pi”, and the “wr_data_pi”. The Memory Controller asserts the “wr_wait_rq_pi” signal in the 
same cycle to request the User Application to hold the “wr_addr_pi” bus, the “wr_pi” signal, and the 
“wr_data_pi” bus until the de-assertion of “wait_rq_pi” signal. 
 

Pipelined Read Transactions 
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Figure 4: Single Read/Write Transaction with Wait cycles 
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The Memory Controller supports pipelined read transactions. The User Application can issue back to 
back read requests until the Memory Controller issues the back-pressure signal “rd_wait_rq_pi”. All the 
return “rd_data_pi” are delivered along with the associated “rd_datav_pi” in the order of the read 
requests. 

 

The above picture illustrates the pipelined read transactions. The User Application issues five back to 
back read requests with the stall happen on the third request. The Memory Controller returns the five 
“rd_data_pi” in the order of the requests. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Pipelined Read Transactions 
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Summary 
 
In each of the above cases MoSys memory controllers are designed to simplify the integration of the 
QPR accelerator engines into a design using the DEEP Mode or WIDE Mode, whichever is the best 
solution. And, to change from one mode too another only requires an FPGA RTL controller change. 
No hardware changes. 
 
The controllers are built with all the high-speed SerDes control and implementation of the GCI protocol 
essentially “hidden away” from your design effort.  
 
MoSys controllers which have been deployed in the field since 2004 have been proven to be robust 
and reliable.  
 
The interface which is presented to the user application interface is a straightforward Address, Data, 
Command bus structure, that is compatible with and easily adapted to an AXI interface. Multiple 
versions are available to support different access patterns and for different hosts (Xilinx, Intel, ASIC 
etc.)  
 
This write-up has been presented to allow a user to realize that integration and implementation of the 
MoSys family of accelerator engines is not a long process and can be accelerated by utilization of the 
readily available MoSys IP. 
 
If, however your desire is to develop your own interface to the Accelerator Engine Family, the GCI 
specification is readily available and free to implement and use.  
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