
Virtual Accelerator Engines

By Michael Miller
CTO, MoSys, Inc.

Introduction

For years, systems architects have been playing cat and mouse by chasing system log jams when

it comes to memory, storage and compute bottlenecks. These factors are interdependent;

speeding up one impacts the others and adjusting only one may not provide any benefit to the

application. Initially, the primary bottleneck was found in the processor clock rate and that was

the primary focus for design. When processors exceeded the clock rate of memory, caches were

born, followed by multiple CPUs sharing the same data. Over the years, power/performance

limitations in process technology have slowed clock rate advances down which led to the

integration of multiple cores onto the same silicon.

As new bottlenecks emerged, the industry went through a phase of disaggregating compute and

memory. Virtual Machines and containers residing in massive cloud datacenters became a way

to provision centralized compute resources. While the core clock rates and effective compute

cycles across many cores have both increased dramatically based on all this innovation, there

are still fundamental issues still to be solved including:

 Latency to main memory has stayed virtually unchanged

 Big and growing datasets create a huge challenge

 Requirement for higher random access to data is becoming the norm

 Critical bottlenecks for these newer applications that cannot be easily cached

The data in the network today used for connections, analytics, security, etc., has become more

unstructured. When it was a spreadsheet, users had nice columns and rows of data they could

load as a burst. SQL database tables were rectangular rows and columns too. Now, the

structures behind leading favorite social media, entertainment and commerce applications

utilize data better organized as a network or as a graph of data nodes. Thus, random access will

increasingly rule the day. The industry can no longer rely on the nice cache line burst paradigm

to save the day.

The trend in the industry now is to leverage heterogeneous workload accelerators on specialized

cards using GPUs and FPGAs with memory. Ultimately, this is all about moving common

workloads and datasets closer to specialized compute engines. In order to handle the vast

amounts of data and the growing need for lower latency, the next step will be to push compute

back out onto the edge of the network and drive customized functions into hardware structures

like smart memories with in-memory compute capability. This will improve processing

throughput performance and power efficiency and further reduce latency for common functions.

MoSys…An Industry Leader in Intelligent Memory Architectures

Mosys is a leader in solving memory bottlenecks such as bandwidth and memory access and, as

such, recognized early on the industry need to embed in-memory functions such as compute,

into powerful memory architectures in silicon devices.

Using high speed random-access embedded memory (1T-SRAM), serial interconnect up to 25G

per lane (bandwidth up to 800G), and in-memory acceleration functions to speed up common

Read-Modify-Write (RMW), the MoSys Bandwidth Engine family (BE2, BE3) of Silicon

Accelerator Engines solve the fundamental memory access bottlenecks.

In-memory compute functions in the Programmable HyperSpeed Engine (PHE), another Silicon

Accelerator Engine, expand the capability by incorporating 32 RISC cores with tightly coupled

1T-SRAM for the highest throughput and lowest latency between memory and compute. The

PHE family includes architectural advances such as multi-port capability and integrated ultra-

fast shared processor memories to complement the large 1T-SRAM array on board to further

accelerate performance and minimize latency in both internal and off-chip memory access

allowing MoSys, or customers to embed functions to increase performance.

The high random-access rate of the MoSys 1T-SRAM, low tRC and smaller granular access sizes

(72b & 144b) make the MoSys memory technology ideally suited for today’s more unstructured

randomly organized data. The 32 RISC engines tightly coupled to the low latency 1T-SRAM

provide for the ideal algorithm engine to implement complex accelerator engines. The question

presented is how to best make use of this accelerator technology.

Virtualized Accelerator Engines

The Problem:

Virtual Machines, Virtual Networks, Cloud Storage and container technology were developed to

allow cloud-based datacenters to more efficiently deploy compute resources. For true software

code, portability this means there is a minimum set of hardware functions that must be available

on all machines. This same strategy is used in Software Defined Networks (SDN) where the

control plane software has a requirement for a minimum set of hardware functions that must

exist. It can be restrictive to introduce accelerator engines in such systems because any

dependencies on the accelerator engine may limit the number of available platforms that higher

level software can run on. This is especially true when the accelerators each has its own software

interface.

So, today the problem is, depending upon the performance required, when an accelerator is

chosen, the software must be changed to accommodate that specific accelerator’s interface. This

becomes a large impediment as to how far an accelerator can be deployed or how broadly an

application can take advantage of accelerators. Furthermore, today’s engineers need to focus on

the higher-level functionality of new emerging network-based applications, not firmware and

how some Instruction Set Architecture interacts with memory in order to implement the best

filtering algorithm.

The Solution:

The solution then is to virtualize the accelerator engine by creating a fixed abstract functionality

and API for a specific function across different hardware environments. The virtualized function

can run on the CPU alone, FPGA only, or higher performance solutions based on an FPGA with

an attached accelerator IC. Based on a single software model, the same virtualized function can

be available in a broader set of environments and scaled extensively across a wide performance

range.

MoSys Creates the Virtual Accelerator Engine Platform

MoSys has developed embeddable Virtual Accelerator Engines (VAE) which can span

implementations including software versions executing on a CPU, optimized FPGA solutions,

and highly accelerated solutions using FPGAs with MoSys Accelerator Engine ICs such as the

MoSys PHE.

There are several key attributes which are at the core of a MoSys VAE Platform’s value

proposition that are discussed in the following sections:

 A single Virtual Architecture

 Single Common API (VAE API)

 Single Common RTL Module Interface (VAE IF)

 Adaption Layer software to higher existing API

A Single Virtual Architecture

MoSys VAEs software interface and functions are the same across all implementations. This

allows for a wide range of instantiations with a large upside range of performance from 30M

operations per second with standard CPU core and DRAM to more than 3B operations per

second using PHE. The highest performance gains are driven mostly by improving the effective

random-access memory rate and represent a range of more than a 100x in performance boost.

Alternatively, using a solution with DRAM and HBM will deliver the highest density with system

blocks of memory measured in 100s of Gigabytes compared to faster but smaller BE or PHE

solutions with 100s of Megabytes. This allows the designer to trade off memory speed vs.

capacity but maintain the same basic software structure.

Each VAE platform is designed to support a specific application function such as classify input

vectors, indexing databases, or performing optimized calculations where the base function can

be generalized enough to fit many types of specific applications.

Single API

Each VAE is implemented with a common API for configuring, managing and presenting

workloads to the accelerator. A common API will allow software engineers to deliver the specific

accelerator function, across platforms without changing the system software structure, only the

hardware implementation will change but in FPGA-based systems, the I/F will also be common.

In most cases, there will be a Software Adaption Layer that runs on the host that maps from the

application layer API to the VAE API. The adaption layer will perform tasks of mapping or

translating from a specific data structure such as machine learning classifier or header look up

key into the data structures executed on the available hardware available for the VAE.

Single Common RTL Module Interface

Most VAE platforms will have FPGA-based products each having a different performance

capability. In these cases, the RTL interface across these FPGA products will have a Common

RTL logic specification (VAE IF). Designing to a common hardware interface allows for easier

migration of performance and capacity. Additionally, the designer can create a wider range of

product offerings and the opportunity for easier implementation of add-on acceleration

modules. At the same time, this provides future proofing because as new silicon becomes

available with a VAE port, the designer can drop it into the same logical “socket”.

In the end, this leverages and protects the software investment, and allow performance scaling

over of several hardware environments.

Adaption Layer Software to Higher Existing API

New software can utilize the VAE API directly, achieving the highest level of performance and

portability. Often the designer must work with existing software, which will require a different

method to address.

Two possible approaches for integrating into existing software:

 Call the virtualized accelerator engine API directly or,

 Create an Adaptation Layer of software with its own specific API. This software

adaptation code takes the current software output and adapts the data to execute the

virtualized accelerator engine. Depending on the platform application product, MoSys

may supply this Adaptor software.

The adaptation code has an API that is customer-specific and allows the customer to protect the

transportability of the code to different hardware environments base on application

performance needs.

For example, a packet filter could be implemented as a Virtual Accelerator and be deployed at

different points in the stack and different points in the network all with the same software

control API where some instances are pure software on a CPU all the way to hardware

accelerator. Having the same common API enables portability of higher-level platform

functionality. As new HW accelerator technology emerges there is an increased probability that

it can be utilized without disrupting the layers above, thus providing future proof path to

increased performance scaling and capacity.

Utilizing the concept of common API and a virtual function, the VAE architecture can be used in

hierarchical systems where the exist parallel paths processing packets from a fast path to slower

paths. The benefit of the common API is that the same software stack can be used to control

each of the paths in the hierarchy in a unified fashion.

Target Applications for Virtualized Accelerator Engines

MoSys virtualized accelerator engine technology and products are targeted initially towards

accelerating embedded storage, search and classification applications which require high

random-access rate of finite data structures. In many systems today, there is a hierarchy of

databases that may range from large to small such as: large structures in non-volatile memory,

“in-memory” databases held in DRAM, and smaller subset databases held in embedded memory

close to the decision-making logic. In many cases, the embedded memory with in-memory

processing may be clustered to create larger storage in aggregate giving benefits of both size and

performance.

 Embedded functions that can be benefit from this technology will likely include:

 Key value pair databases

 Networking search functions

 Machine Learning

 Computation

 Algorithm acceleration

 Security analysis

 And more

MoSys will focus on:

 Embedded applications

 Apps that require high random-access rate data

 Applications requiring low latency

Target markets where these functions are used include:

 Smart NICs

 Security appliances

 Network hardware

 Datacenter acceleration cards

 5G edge compute

 Defense and aerospace

 High-performance computing

 High speed test equipment

 And more

Summary

As more and more applications rely on analysis of unstructured and random data, compute

accelerators will continue to gain importance and will migrate to the edge of the network in

order to address the need for reducing latency and increased processing throughput for common

functions.

MoSys virtualized accelerator engine technology and products are designed to accelerate

embedded storage, search and classification applications which require high random-access rate

of finite data structures while insulating today’s engineers from the minutiae of programming

firmware and hardware.

Since the API is common, the same virtualized accelerator engine software can be used from the

central part of a system and its use can be replicated to the edges, making it a cost-effective

solution for broad deployment thus achieving a high degree of platform portability.

Finally, the virtualized function and the common API work together to provide for future

proofed road maps that can incorporate higher levels of hardware acceleration, future

improvements in silicon technology and expanded capacity ranges.

	Introduction
	Introduction
	Virtualized Accelerator Engines
	Virtualized Accelerator Engines
	Virtualized Accelerator Engines
	MoSys Creates the Virtual Accelerator Engine Platform
	MoSys Creates the Virtual Accelerator Engine Platform

