

Quazar Serial Accelerator Devices
This product brief presents a comprehensive
overview of the integration and
implementation of the MoSys family of
Quazar accelerator engines and shows how
applications can be accelerated by utilization
of the readily available MoSys IP.

The MoSys RTL controller operates similar
to a QDR type memory.

Key Features / Product Options

• Highlight simple user RTL interface that

controls the serial memory interface,
requiring no user RTL design effort

• Interfaces between Memory Controller and
User Application

• Read and Write controls

• Interface Signals

• Memory Controller selected by user to
operate memory in DEEP Mode (4 SRAMS)
or WIDE Mode (8 SRAMS)

Overview

The MoSys memory controllers are
designed to simplify the integration of the
accelerator engines into a design.

• The controllers are built with all the high-

speed SerDes control and implementation of
the GCI protocol essentially “hidden away”
from your design effort.

• MoSys controllers which have been deployed

in the field since 2004 have been proven to
be robust and reliable.

• The interface which is presented to the user
application interface is a straightforward
Address, Data, Command bus structures
compatible with and easily adapted to an AXI
interface.

• Multiple versions are available to support
different access patterns and for different
hosts (Xilinx, Intel, ASIC etc.)

This write-up has been presented to allow a
user to realize that integration and
implementation of the MoSys Quazar family
of accelerator engines is not a long process
and can be accelerated by utilization of the
readily available MoSys IP.

Quazar FPGA RTL Memory Quazar QPR
Controller Selector

P R O D U C T B R I E F

QUAZAR Accelerators

Quazar F RTL Memory Quazar QPR Controller Selector

Introduction

The MoSys Quazar memory controllers are
designed and offered with a few variations of
memory access patterns. The most common
access patterns are:

• Balanced Read/Write (similar to QDR
SRAM)

• Native (higher read access than write – for
table access applications)

• This is two separate controllers)

The RTL that is supplied by MoSys provides an
interface between the User Application Logic
and the MoSys Quazar Accelerator Engine
device (MSQ220 = QPR4 or MSQ230 =
QPR8). The Memory Controller also
implements all the required signaling and
handshaking defined in the GCI Interface
protocol, Framer logic.

The signals interface at the User Application
provides Quad Partition Rate (QPR) devices
with a simple SRAM memory read/write
operation. This simple interface shields the
users from designing scheduling logic for QPR
memory partitions wheel.

The goal of each of the Memory Controller designs
is to balance the bandwidth between the User
Application Interface and the QPR Interface. For
many applications there will be four read/write
interfaces from the User Application running at the
host core clock frequency. This is to balance the
bandwidth of the application logic (assumed to be
running at FPGA speeds vs. the GCI I/O and core
frequency of the MoSys accelerator engines)

In many of the FPGA applications that has been
between 250MHz and 390MHz clock rate. Each
interface can accommodate one memory read and
one memory write on each clock cycle. These
result in memory accesses per interface that can
saturate the access bus to the memory.

This allows the total bandwidth at the User
Application interfaces to be up to 2.5 billion
memory accesses per second when using an
MSQ220 device and 5 billion memory operations
when using an MSQ230 device. (This bandwidth
matches the total I/O bandwidth on a QPR device
when using all 16 lanes at maximum allowable
SerDes rate of the Accelerator engine device) per
lane. The following picture illustrates the above
memory bandwidth discussion.

2.5 Billion Accesses for 2 - GCI interfaces

Figure 2: Memory Controller Interface
Figure 1: Memory Bandwidth between Memory

Controller and Bandwidth Engine.

Memory Operating Modes

Each QPR memory has two ports and the memory can operate in two modes.

• Deep Mode
o 4 independent SRAMs
o SRAMs capacity is the device total capacity divided by 4.
o MSQ220 (QPR4) has 4 memories of 2M x 72b
o MSQ230 (QPR8) has 4 memories of 4M x 72b

• Wide Mode
o 8 independent SRAMS
o SRAMs capacity is the device total capacity divided by 8
o MSQ220 (QPR4) has 8 memories of 1M x 72b
o MSQ230 (QPR8) has 8 memories of 2M x 72b

The following description of the RTL controller described the User RTL interface to one
SRAM. This interface is duplicated for each SRAM on the device.

RTL Memory Quazar QPR Controller Selector

Diagram shows the Memory DEEP Mode and
WIDE Mode for QPR4 and QPR9

 MSQ220 (QPR4) 576Mb Memory
Deep 4 Partition RTL Memory Controller
 Each Partition is 2M x 72b
 Independent Random-Access

 MSQ230 (QPR8) 1Gb Memory
Deep 4 Partition RTL Memory Controller
 Each Partition is 4M x 72b
 Independent Random-Access

 MSQ220 (QPR4) 576Mb Memory
Wide 8 Partition RTL Memory Controller
 Each Partition is 1M x 72b
 Independent Random-Access

 MSQ230 (QPR8) 1Gb Memory
Wide 8 Partition RTL Memory Controller
 Each Partition is 2M x 72b
 Independent Random-Access

Balanced Read/Write, Native

Interfaces between Memory Controller and User
Application

This section describes the interface signals and the interface protocols between the Memory Controller
and the User Application.

Interface Signals

The interface between Memory Controller and User Application consists of four sets of similar
interface signals. However, just one of the interfaces will be described to avoid redundancy. All signals
will be appended by the string “_pi” at the end of their names where i can be 0, 1, 2, or 3 depending on
the interface set.

The following table describes all the signals in one of the interface signals set between the User
Application and the Memory Controller. There are up to four of these interface signals sets in an
implementation.

Signal Name Width Dir Description

Read Interface

rd_pi 1 In Assertion of this signal to indicate that this is a read transaction.

rd_addr_pi 32 In Read address of the memory for this transaction. For burst transaction, this

is the first address of the burst memory block. Please refer to the Address

section of this specification to see the detail of this address field.

rd_data_pi 72 Out Returned data from BE1 memory. This data is qualified by the “rd_datav_pi”

signal.

rd_wait_rq_pi 1 Out The Memory controller asserts “rd_wait_rq_pi” to indicate that it cannot

accept the current read request. The User Application should hold all the

request signals (rd_pi, rd_addr_pi …) until the de-assertion of this signal.

rd_datav_pi 1 Out The Memory Controller asserts this signal to indicate the current data in the

“rd_data_pi” bus is valid.

rd_burstcount_pi 5 In These signals show the number of 72-bits words in this read burst

transaction.

rd_burst_pi 1 In Assertion of this signal to indicate this transaction is the read burst

transaction.

rd_flush_pi 1 In Assertion of this signal will flush all the pending read transactions and their

associated read data. The flush action is effective for the next cycle after the

assertion of “flush” signal. It is the responsibility of the User Application to

ignore or to accept the valid “rd_data_pi” in the current cycle.

Write Interface

wr_pi 1 In Assertion of this signal to indicate that this is a write transaction.

wr_addr_pi 32 In Write address of the memory for this transaction. For burst transaction, this

is the first address of the burst memory block. Please refer to the Address

section of this specification to see the detail of this address field.

wr_data_pi 72 In Write data from the User Application logic.

wr_wait_rq_pi 1 Out The Memory controller asserts “wr_wait_rq_pi” to indicate that it cannot

accept the current write request. The User Application should hold all the

request signals (wr_pi, wr_addr_pi …) until the de-assertion of this signal.

wr_burstcount_pi 5 In These signals show the number of 72-bits words in this write burst

transaction.

wr_burst_pi 1 In Assertion of this signal to indicate this transaction is the write burst

transaction

Interface Protocol

This section illustrates the interface protocols between the User Application and the Memory
Controller.

Single Read/Write transactions

The above picture illustrates the read transaction followed by a write transaction. A read
transaction is initiated by the user application on the assertion of the “rd_pi” signal, and the read
address “rd_addr_pi”. The Memory Controller returns the “rd_data_pi” along with the “rd_datav_pi”
signal to indicate the read data is valid in that cycle.

The write cycle is initiated by the user application on the assertion of the “wr_pi” signal, the write
address “wr_addr_pi”, and the “wr_data_pi”.

Single Read/Write Transaction with Wait cycles

CL

K RD rd_addr_

pi

rd_wait_rq_pi

rd_data_p

i rd_datav_pi

wr_data_p

i

wr_pi

rd_pi

WRT wr_addr_pi

rd_burst_pi

wr_burst_pi

Figure 3: Single Read/Write Transaction

The above picture illustrates the read transaction followed by the write transaction with wait request
from the Memory Controller to stall the User Application.

The read transaction is initiated by the assertion of signal “rd_pi” along with the read address
“rd_addr_pi”. The Memory Controller asserts the “rd_wait_rq_pi” signal in the same cycle to request
the User Application to hold the “rd_addr_pi” bus and the “rd_pi” signal until the de-assertion of
“rd_wait_rq_pi”. This is the mechanism for the Memory Controller to asserts back-pressure the User
Application logic in the case its FIFOs are full. As in the non-stalled case, the Memory Controller
returns the “rd_data_pi” along with the “rd_datav_pi” signal to indicate the validity of the data in that
cycle.

The write transaction is initiated by the assertion of signal “wr_pi” along with the write address
“wr_addr_pi”, and the “wr_data_pi”. The Memory Controller asserts the “wr_wait_rq_pi” signal in the
same cycle to request the User Application to hold the “wr_addr_pi” bus, the “wr_pi” signal, and the
“wr_data_pi” bus until the de-assertion of “wait_rq_pi” signal.

Pipelined Read Transactions

CL

K RD rd_addr_pi

rd_pi

rd_data_p

i rd_datav_pi

wait_rq_pi

wr_data_p

i

wr_p

i

wr_burst_pi

WRT wr_addr_p

i

rd_burst_pi

wr_wait_rq_p

i

Figure 4: Single Read/Write Transaction with Wait cycles

`

The Memory Controller supports pipelined read transactions. The User Application can issue back to
back read requests until the Memory Controller issues the back-pressure signal “rd_wait_rq_pi”. All the
return “rd_data_pi” are delivered along with the associated “rd_datav_pi” in the order of the read
requests.

The above picture illustrates the pipelined read transactions. The User Application issues five back to
back read requests with the stall happen on the third request. The Memory Controller returns the five
“rd_data_pi” in the order of the requests.

Figure 5: Pipelined Read Transactions

CL

K

rd_pi

A1 rd_addr_p

i

A2 A3 A4 A5

rd_wait_rq_pi

rd_data_p

i
rd_datav_pi

D1 D2 D3 D4 D5

rd_burst_pi

Summary

In each of the above cases MoSys memory controllers are designed to simplify the integration of the
QPR accelerator engines into a design using the DEEP Mode or WIDE Mode, whichever is the best
solution. And, to change from one mode too another only requires an FPGA RTL controller change.
No hardware changes.

The controllers are built with all the high-speed SerDes control and implementation of the GCI protocol
essentially “hidden away” from your design effort.

MoSys controllers which have been deployed in the field since 2004 have been proven to be robust
and reliable.

The interface which is presented to the user application interface is a straightforward Address, Data,
Command bus structure, that is compatible with and easily adapted to an AXI interface. Multiple
versions are available to support different access patterns and for different hosts (Xilinx, Intel, ASIC
etc.)

This write-up has been presented to allow a user to realize that integration and implementation of the
MoSys family of accelerator engines is not a long process and can be accelerated by utilization of the
readily available MoSys IP.

If, however your desire is to develop your own interface to the Accelerator Engine Family, the GCI
specification is readily available and free to implement and use.

.

MoSys is a registered trademark of MoSys, Inc. in the US and/or other countries.

Blazar, Bandwidth Engine, HyperSpeed Engine, IC Spotlight, LineSpeed and the MoSys logo

are trademarks of MoSys, Inc. All other marks mentioned herein are the property of their respective owners. PB_AE-RTL MEMORY CONTROLLER QPR_201124

2309 Bering Drive, San Jose, CA

95131 Tel: 408-418-7500 Fax:

408-418-7501

2309 Bering Drive, San Jose, CA

95131 Tel: 408-418-7500 Fax:

408-418-7501

